承载力与尺寸设计:支座须具备足够的平面尺寸以支承上部结构压力,同时厚度需满足水平位移和转角需求。
支承垫石顶面标高力求准确一致。支承垫石内应布设钢筋网片,竖向钢筋应与墩台内钢筋相连接。支承垫石内应布置钢筋网,竖向钢筋与墩台内钢筋焊接在一起。支持和具体的直接接触可以保证支座没有运行,如果梁底预埋钢板,支座易逃脱。支垫完成取出旧支座后,在安放新支座前,还需在原支座位置定位,以确保支座更换后位置准确。支墩混凝土与底板混凝土分两次浇筑,次浇筑高度与底板面相同,第二次浇筑下支墩。见下图:隔震支墩支设隔震层顶板、梁模板支设隔震层梁、板模板:梁板支设方式同其它各层。
摩擦滑移隔震支座
抗震与隔震性能分析能量传递与评价:通过计算结构振动过程中输入各部分的功率流,可以量化传递至桥墩的振动能量,从而科学评价不同支座参数对桥梁整体抗震性能的影响效果。
隔震特性:隔震装置具有可变的水平刚度特性,在强风或微小地震时(F≤F,具有足够的水平刚度K1,上部结构水平位移极小,不影响使用要求;在中强地震发生时,(F>F,其水平刚度K2较小,上部结构水平滑动,使“刚性”的抗震结构体系变为“柔性”的隔震结构体系,其自振周期大大延长(例如TS=2~4S),远离上部结构的自振周期(TS=0.3~1.2S)和场地特征周期(TG=0.2~0S),从而把地面震动有救地隔开,明显地降低上部结构的地震反应,可使上部结构的加速度反应(或地震作用)降低为传统结构加速度反应的1/4~1/12。并且,由于隔震装置的水平刚度远远小于上部结构的层间水平刚度,所以,上部结构在地震中的水平变形,从传统抗震结构的“放大晃动型”变为隔震结构的“整体平动型’,从激烈的、由下到上不断放大的晃动变为只作长周期的、缓慢的、整体水平平动.从有较大的层间变位变为只有很微小的层间变位,斟而上部结构在强地震中仍处于弹性状态。这样,既能保护结构本身.也能保护结构内部的装饰、精密设备仪器等不遭任何损坏,确保建筑结构物和生命财产在强地震中的安全。
摩擦摆隔震支座FPSII-9000-400-4.11
摩擦系数:摩擦系数对支座的阻尼性能有较大影响,在确定了准确的曲率半径基础上,选取合适的摩擦系数才能有效地增加建筑的抗震性。
清除支座周边垃圾、杂物,冬季及时清除积雪冰块,确保梁跨自由伸缩;滚动支座(若配套使用)滚动面需先用钢丝刷 / 揩布清洁,再涂薄层锂基润滑脂(用量≥50g/㎡),避免干摩擦磨损。
摩擦摆隔震支座FPSII-4000-400-4.11生产厂家
质心与刚心偏心率控制实际工程中,除需考虑扭转变形外,要求上部结构质心与隔震层水平刚度中心的偏心率不超过 3%;江苏、云南、新疆等部分地区提出更严格要求,偏心率控制在 2%~5% 范围内。通过严格控制偏心率,可避免地震作用下上部结构产生过大扭转变形,保障隔震效果。
采用减隔震组合技术,在建筑中加入旋转摩擦阻尼器以满足由EEDP进行减隔震设计的建筑的实际地震需求。对旋转摩擦阻尼器的结构形式及工作原理、荷载-位移关系、耗能的稳定性进行了介绍。结合旋转摩擦阻尼器滞回曲线的特点,将其与弹簧结合能够得到弹塑性双折线模型,就这一组合在高速铁路建筑中的应用形式进行了简要探讨。
摩擦滑移隔震支座源头工厂
工程中固定支座的布置需遵循明确原则:坡道段工程中,固定支座设于较低一端;车站附近工程中,固定支座设于靠近车站一端;区间平道段工程中,固定支座设于重车方向前端;当布置要求出现重叠时,优先满足坡道段布置规则;特殊工况下,严禁将相邻两孔的固定支座设置于同一桥墩。
支座通常在工厂组装好后整件运输到工地,为保证运输过程中支座的完整性和整体性,应使用临时定位装置将支座各部件可靠连接。

抗倾覆隔震支座:作为一种新型支座产品,通常由上连接板、控制箱箱体和下连接板等部件构成,能有效提升结构抗倾覆稳定性。
板式支座应用范围:目前主要普遍应用于跨径在6米至20米之间的中小跨径钢筋混凝土、预应力混凝土及钢桥。其最大设计支承反力已能达到相当高的水平。
