隔震装置在经历地震后,其上部结构会产生相对的位移,这可能会对建筑的后续使用功能产生影响。因此,震后必须对隔震装置进行全面检查,并对其进行必要的修补与完善,确保其性能恢复。
隔震减震技术的应用使得今后设计的建筑可以在地震时保护结构的框架和其他非结构单元,保护结构内的设施、工业设备、人等的安全,使建筑物在地震后可以继续使用。隔震技术改变了目前的结构设计思想,可提供更多的设计方案供人们选择。虽然这些技术尚在发展研究中.但其在工程结构上广泛的应用前景是无庸置疑的。
摩擦摆隔震支座生产厂家
圆形支座(GYZ系列):适用于曲线桥、斜交桥及圆柱墩桥。
球型支座:较盆式支座具有转动灵活、适应大转角等优势,适用于大跨径桥梁;隔震支座:虽增约5%造价,但可显著降低震后修复成本,社会经济效益显著;简易支座:跨径<10m的简支结构可采用平板支座或油毛毡垫层。
减隔震摩擦摆支座生产厂家
滑移面卡顿会影响支座的正常滑动功能,进而影响桥梁或建筑结构在温度变化、地震等作用下的位移调节能力。硅脂干涸是导致滑移面卡顿的常见原因之一,硅脂作为滑移面的润滑剂,随着时间的推移和环境因素的影响,会逐渐失去润滑性能,变得干涸;杂质侵入也是一个重要因素,如灰尘、沙粒等杂质进入滑移面,会增加滑移面的摩擦力,导致卡顿现象的发生 。针对这一病害,需要对滑移面进行彻底清理,去除杂质,然后补注硅脂,要求硅脂的覆盖率≥95%,以确保滑移面具有良好的润滑性能,保证支座能够顺畅地滑动 。
对路基工程的影响:从更广的视角看,保证路基的强度与稳定性是确保路面乃至整个上部结构稳定的先决条件。性能良好的支座系统有助于将上部荷载均匀传递,间接对下部结构的长期性能提出要求并产生积极影响。
摩擦式隔震支座生产厂家
支座安装的精确定位是保证结构受力的关键环节。以支座偏位为例,这种质量问题通常源于支座或垫石放样偏差。在安装过程中应进行全程校核,如垫石位置存在轻微偏差,可采用特种砂浆材料进行调整;若偏差超出允许范围,则需重新浇筑垫石,确保安装精度。
随着现代科技的发展,为了有效提高建筑物抗震能力,科学家们开始发展隔震、减震与结构控制技术。在坚固基础上的结构在大地震作用下犹如一个“放大器”,一般会放大结构的振动响应,造成上部结构的破坏。传统抗震技术采用的是通过加大结构断面尺寸和配筋,使结构变得“刚强”的方式来抗御地震作用,或者容许结构构件有损坏,利用构件损坏后的韧性(结构进入非弹性状态)来降低地震作用,使结构“裂而不倒”。前一种“硬抗”方法不经济,有时也难以抵御强烈地震;后一种增加韧性的方法,在大震时,虽然结构不会倒塌,但是无法控制。所以20世纪70年代后期开始,科学家们发展了隔震与结构消能减震技术来增强结构的抗震能力。
摩擦摆隔震支座FPSII-3000-350-3.81生产厂家
安装变形问题:支座在安装或使用过程中出现的变形(包括压缩变形与剪切变形) 是常见问题。主要原因包括:
支座就位是一个关键步骤,滑移面的清洁和润滑直接影响到支座的滑动性能。在安装前,需用丙酮对滑移面进行仔细清洁,去除表面的油污、灰尘等杂质,确保滑移面的洁净。然后注满 5201 硅脂,用量≥200g/㎡,硅脂具有良好的润滑性能和抗老化性能,能够大大降低支座滑移面之间的摩擦系数,保证支座在水平位移时的顺畅性 。地脚螺栓孔采用高强无收缩砂浆灌注,这种砂浆具有早期强度高、无收缩等优点,能够确保地脚螺栓与基础之间的牢固连接,防止在使用过程中出现松动现象。螺栓紧固力矩需按型号严格控制,以 GPZ2000 支座为例,力矩≥300N?m,通过精确控制螺栓紧固力矩,保证支座在安装后能够稳定地工作,承受桥梁结构传来的各种荷载 。

在需要更换隔震支座时,由于支座在上部荷载作用下存在压缩量,顶升过程中会产生自然反弹。为控制这一风险,可采用上下法兰板用钢板焊接的固定方式,减少楼板顶升位移量,确保混凝土结构安全。
适配性广泛:可应用于桥梁、医院、住宅等各类建筑与市政工程,尤其适用于地震高发区域的关键建筑(如美国加利福尼亚大学圣迭戈分校曾用地震模拟器测试 5 层 24 米高的模拟医院,验证了隔震支座对建筑的有效保护作用)。
