适用结构:高架桥坡梁、斜交梁(斜交角≤45°)、曲梁等异形结构;多跨连续梁、简支梁连续板等需适应温度变形、地震位移的建筑;造价低于盆式支座约 30%,安装便捷,适用于对经济性与可靠性均有要求的工程。
支座垫石应配置专用钢筋网,当采用直径8毫米钢筋时,网格间距宜控制在50毫米×50毫米。桥梁墩台结构应有竖向受力钢筋延伸至支座垫石区域,垫石混凝土强度等级不应低于C30标准。
10000KN摩擦摆隔震支座
支座承载力需根据建筑恒载、活载的支点反力之和及墩台支座数目综合计算。设计时需遵循以下原则:
支座通常在工厂组装好后整件运输到工地,为保证运输过程中支座的完整性和整体性,应使用临时定位装置将支座各部件可靠连接。
摩擦滑移隔震支座厂家
摩擦摆减隔震支座的关键性能指标明确:正常工作状态下摩擦系数不大于 0.03,减隔震工况下摩擦系数不大于 0.05,适用温度范围为 - 40℃~60℃;剪力螺栓设计需满足竖向承载力 5%-15% 的要求,未明确注明时按竖向承载力的 10% 设计。
建筑隔震技术能使结构抗震安全性大幅提高,近年来其优异的抗震效果在多次实际地震中得到了充分验证。隔震支座安装阶段,应对支墩(或柱)顶面和隔震支座顶面的水平度、隔震支座中心的平面位置和标高进行精确观测记录,确保安装质量。
摩擦摆隔震支座FPSII-1000-300-3.48源头工厂
保护层维护:支座的侧向保护层是使用中易受损的薄弱环节。必须严格禁止出现破损、裂纹、缺胶、露铁、起鼓等现象。绝对不可以使用502等非结构用胶水进行临时修补,以免改变材料性能或掩盖潜在问题。
缝宽设置:按隔震层最大水平位移 + 20% 安全裕量,通常 50~100mm;填充材料:采用弹性聚氨酯泡沫(压缩变形率≥50%),外侧设铝合金盖板;防水处理:缝内侧涂刷水泥基渗透结晶型防水涂料,避免雨水渗入隔震层。
摩擦摆隔震支座FPSII-1000-300-3.48厂家
该支座通常由上、下两部分组成,上部连接桥梁或建筑物,下部连接基础或桥墩,中间通过钢板和轴承实现连接,同时在钢板和上、下部之间设置了摩擦体,从而形成一定的摩擦阻力。
随着现代科技的发展,为了有效提高建筑物抗震能力,科学家们开始发展隔震、减震与结构控制技术。在坚固基础上的结构在大地震作用下犹如一个“放大器”,一般会放大结构的振动响应,造成上部结构的破坏。传统抗震技术采用的是通过加大结构断面尺寸和配筋,使结构变得“刚强”的方式来抗御地震作用,或者容许结构构件有损坏,利用构件损坏后的韧性(结构进入非弹性状态)来降低地震作用,使结构“裂而不倒”。前一种“硬抗”方法不经济,有时也难以抵御强烈地震;后一种增加韧性的方法,在大震时,虽然结构不会倒塌,但是无法控制。所以20世纪70年代后期开始,科学家们发展了隔震与结构消能减震技术来增强结构的抗震能力。

异常变形:支座四周波纹状凸凹不均属异常,需检查荷载分布或更换支座。 治理时需分析病因,结合现场情况采取调整、加固或更换措施。例如,隔震支座安装时需通过锚筋和套筒定位模板,防止混凝土浇筑偏位。
在支座选型方面,应优先考虑矩形支座设计,因为矩形支座沿短边方向的转动性能明显优于长边方向;圆形支座虽然各向转动性能一致,但总体转动效能通常不及矩形支座。支座设计不仅要满足承受和传递荷载的基本要求,还应确保桥跨结构能够产生必要的变位,同时保证力的传递路径合理通畅,避免出现过度应力集中现象。
