摩擦耗能机制:在地震作用下,滑板支座通过产生较大的滑移,利用摩擦作用消耗地震能量,从而显著降低结构的整体响应。需要注意的是,部分设计规范中的公式可能未能充分恰当地考虑其摩擦耗能作用。
外观检查:橡胶层是否开裂、鼓包,钢板是否锈蚀,支座是否偏压、脱空;性能检测:摩擦系数(四氟板式)、竖向压缩变形(≤15% 设计值),超标需预警。
建筑隔震摩擦摆支座生产厂家
在需要更换隔震支座时,由于支座在上部荷载作用下存在压缩量,顶升过程中会产生自然反弹。为控制这一风险,可采用上下法兰板用钢板焊接的固定方式,减少楼板顶升位移量,确保混凝土结构安全。
水平向减震系数:对于隔震建筑,需通过动力分析计算“水平向减震系数”。该系数通常取隔震结构与对应的非隔震结构在各楼层剪力最大比值的0.7倍,是衡量隔震效果的关键指标。
摩擦摆隔震支座FPSII-6000-350-3.81生产厂家
支座安装平面必须与支座的滑动平面或滚动平面平行,其平行度偏差不宜超过2‰。
在支座正式安装前,必须对支座的预设安装位置进行精密测量与复核。支座安装基准面需与支座的滑动平面或滚动平面保持平行,两者间平行度偏差应严格控制在2‰以内。
建筑摩擦摆隔震支座生产厂家
地基隔震技术主要通过使用砂垫层、软粘土等材料在建筑物地基中设置防震层。当地震发生时,建筑物地基能够通过防震层反复吸收地震波能量,从而达到降低地震作用的效果,有效保护建筑物安全。
摩擦摆隔震支座是一种先进的隔震装置,通过其独特的摩擦耗能机制,能够显著提高建筑物和桥梁的抗震性能,保护人民生命财产安全。
摩擦摆隔震支座FPSII-10000-300-3.48
易于安装和维护:摩擦摆隔震支座的安装相对简单,且后期维护成本较低。
同步受力:同一片梁的各个支座必须置于同一设计标高平面上,以确保支座均匀受力,严格避免支座的偏心受压、不均匀支承及个别支座脱空等不利现象。

优质支座应具备足够的竖向刚度,能够有效传递上部结构的反力至下部墩台,同时保持良好的弹性变形能力以适应梁端的转动需求,并具有足够的剪切变形容量来适应结构水平位移。
技术要点:传统的采用人工控制多个千斤顶进行顶升更换支座的方法,往往难以精确保证所有顶升点的速率和高度同步,这种受力不均的状态会给桥梁结构本身带来额外的损伤风险。
