在板式橡胶支座表面粘复一层1.5MM-3MM厚的聚四氟乙烯板,就能制作成聚四氟乙烯滑板式橡胶支座它除了竖向钢度与弹性变形,能承受垂直荷载及适应梁端转动外,因聚四氟乙烯板的低摩擦系数,可使梁端在四氟板表面自由滑动,水平位移不受限制,特别适宜中、小荷载、大位移量的建筑使用。
解如下:建筑支座是桥跨结构的支撑部分,其设置在梁板式体系中主梁与墩台之间,作用是将桥跨结构的荷载反力传递到墩台上,并将集中反力扩散到一个足够大的面积上,以保证墩台工作的安全可靠;是保证桥跨结构在荷载、温度变化、混凝土收缩和徐变等因素作用下能自由地变形(水平位移及转角),使结构实际受力时情况与结构的受力模型相符;是保证桥跨结构在墩台上的位置充分固定,使其不至滑落。
摩擦摆隔震支座FPSII-1000-350-3.81厂家
地震位移控制:实际震害观测表明,采用了隔震技术的建筑,其上部结构相对于地面的位移被有效控制,从而保证了主体结构在大震下的安全,这对于震后的抢险救灾与指挥至关重要。
该支座的结构通常由上下两部分组成,上部连接桥梁或建筑物,下部连接基础或桥墩,中间通过钢板和轴承实现连接,同时在钢板和上、下部之间设置了摩擦体,形成一定的摩擦阻力。
摩擦摆隔震支座FBD
动力学分析:在深入研究支座的动力学特性时,例如通过功率流等方法分析其能量传递,可以清晰地观察到支座参数对结构响应的影响。为聚焦核心问题,相关研究常选取典型位置(如固定墩和活动墩)作为分析对象,深入探究流入结构的功率流如何随支座水平刚度的变化而变化,从而为支座参数的优化选择提供依据。
核心优势:该类型支座不仅技术性能优良,更具有构造简单、价格低廉、无需定期养护、易于更换替换、缓冲隔震效果明显以及建筑高度低等显著优点。
摩擦摆隔震支座FBD
隔震技术应用的综合效益:(一)工程设计效益:在中高烈度地区,采用基础隔震技术的建筑可突破现行抗震规范中房屋层数与高度的限制:在保证高宽比的前提下,建筑层数可提高 1~2 层,直接提升建筑物容积率,节省建设用地,提高土地利用效率,兼具经济效益与社会效益。(二)施工工期与成本效益:隔震技术应用虽增加了隔震层施工工序,延长了该阶段工期,但上部结构构件配筋量可相应减少,钢筋制作难度降低,建筑材料与人工成本得以节约。通过对隔震与非隔震建筑施工工期的详细对比验证,两类工程总工期无明显差异,隔震技术应用不会造成整体工期延误。
安装精度要求高:在施工安装过程中,尽管有临时固定装置,但在较大的重力荷载作用下,较难保证安装精度,可能出现初始偏心、不对中的情况,从而偏离设计的理论要求,影响隔震效果甚至存在安全隐患。
摩擦摆式减隔震支座生产厂家
性能突破:相比普通板式支座,四氟板式支座通过 “PTFE 板 - 不锈钢板” 滑移副,将摩擦系数降至 0.02-0.03(常温状态),使上部结构水平位移不再受支座自身剪切变形量限制,可满足大位移量(±100mm-±300mm)需求;
高速铁路桥墩抗震与减隔震性能目标为明确高速铁路桥墩的抗震性能,通过对现有高铁桥墩试验数据及有限元模型分析,得出高铁桥墩在设计地震作用下可能发生屈服的结论。依据我国现行高速铁路抗震设计规范的三水准设防目标,可进一步将高速铁路减隔震建筑的性能目标具体化,为高铁工程隔震设计提供依据。

LRB500隔震支座的特点和作用
摩擦摆隔震支座(Friction Pendulum Bearing,简称FPB)是一种先进的隔震装置,它基于钟摆原理和摩擦耗能机制来减少建筑物或桥梁在地震等外部激励下的响应。摩擦摆隔震支座通过球面滑动和摩擦耗能来隔离地震能量,从而保护上部结构免受地震破坏。
