氯丁橡胶板块装入钢盆时,需通过分段加压(从中心向四周)排除内部空气,确保橡胶与钢盆内壁紧密贴合,密封后需进行气密性测试(加压 0.05MPa,保压 30min 无泄漏),防止雨水渗入导致钢盆锈蚀。
每块支座应该贴有出厂标识,一般都是商标,例如双林支座。美国公路建筑设计规范(AASHTO一9中对板式橡胶支座的构造特点及性能要求都做了具体规定。密封胶条:采用氯丁或三元乙丙橡胶制造,具有良好的耐老化、耐曲挠性能。明显有效地减轻结构的地震反应模数式伸缩装置可按一定模数任意组拼,从的单缝到的多缝,当伸缩量时,可按设计要求在工厂加工制造。摩擦系数:滑动型支座设计摩擦系数为0.03;摩擦系数:检测四氟滑板和不锈钢板在有硅脂润滑条件下的摩擦力大值。某些建筑物内部的物品、仪器价值远大于理筑本身的造价,地震的剧烈震动造成巨大的经济损失。木模的接缝可做成平缝、搭接缝或企口缝。
摩擦摆隔震支座FPSII-3000-400-4.11厂家
为了确保隔震橡胶支座在地震中能够可靠地发挥作用,对其关键性能指标进行严格控制至关重要。
材料检测:橡胶、加劲钢板及四氟乙烯板等原材料需符合物理机械性能规定。
摩擦摆球型减隔震支座
四氟板式橡胶支座:在板式支座基础上,利用四氟乙烯与梁底不锈钢板间的低摩擦系数(μ≤0.08),实现上部构造水平位移不受限制的功能。
橡胶支座作为建筑与桥梁工程中关键的承重抗震构件,主要包括 GPZ 盆式橡胶支座与隔震橡胶支座两大类,其性能直接影响结构的稳定性、安全性与使用寿命。本文将从产品核心特性、设计技术规范、施工安装要求及工程应用价值等方面,进行系统梳理与优化说明。
摩擦摆隔震支座FPSII-8000-400-4.11生产厂家
水平变形能力是衡量隔震橡胶支座抗震性能的另一个重要指标。通常要求设计剪切应变达到 250%,这意味着支座能够承受较大的水平变形。根据这一指标,位移量可以通过支座高度 ×2.5 来计算,以确保在地震发生时,支座能够通过自身的水平变形有效地吸收和分散地震能量。同时,为了保证建筑结构在地震后的正常使用,要求震后 24 小时内,支座的复位偏差≤5mm,确保建筑结构能够迅速恢复到稳定状态,减少地震对建筑使用功能的影响 。
橡胶支座选配无需过度追求安全储备冗余,应基于实际受力计算科学选型:当计算得出支座最大反力 4100、最小反力 3700 时,可选用承载力 4000 的支座(其允许支反力变化范围为 3200~4200),无需为追求 “更安全” 而盲目选用承载力 5000 的支座,避免造成材料浪费及结构受力不合理。
摩擦摆隔震支座FPSII-3000-350-3.81
板式橡胶支座(含GJZ、GYZ系列)由多层橡胶与薄钢板经镶嵌、粘合、硫化工艺复合而成,具有承载力强、适应变形能力佳等特点。其耐火性能需满足相关建筑防火规范,部分型号通过优化橡胶配方与结构设计可达到更高防火等级。支座反力通过平面传递,避免力流颈缩,传力路径合理高效。
支座作为建筑结构体系中的关键连接构件,承担着传递荷载、适应变形、保障结构整体稳定性等多重功能。随着建筑技术的持续发展,各类支座的性能不断优化,应用领域也日益拓宽,尤其在应对复杂结构形式和抗震隔震需求中,支座技术发挥了关键支撑作用。

滑移结构优化:采用不锈钢板与聚四氟乙烯模压板组成平面滑移面,摩擦系数极低,能有效适应结构水平位移需求,同时具备承载能力大、变形量小的优势,可长期承受重载而保持稳定。
并于1988年制定/4公路建筑板式橡胶支座技术条件》(JT3132.288),随后又相继制定了《公路建筑板式橡胶支座规格系列》(JT3132.1—88)和《公路建筑板式橡胶支座力学性能检验规则》(JT3I32.3—90)等交通部标准.1994年修定颁布/4公路建筑板式橡胶支座标准》(JT/T4——9,后来又修订为(JT/T4—200执行,为正确使用相大面积推广应用板式橡胶支座奠定了基础。
