与周边结构的协同:在安装有隔震支座的建筑中,需注意与其他工序的协调。例如,绑扎隔震层底板梁钢筋时,应避免碰撞下预埋板。当钢筋位置与预埋件冲突时,可将钢筋调整为双排或多排布置,并保持箍筋肢数不变。同时,可能需要使用如特种补偿收缩混凝土(如C50砼) 以保证结构的整体性。
基础隔震(主流形式):隔震层设于基础与上部结构之间,通过橡胶支座 + 阻尼装置吸收地震能量,适用于多数建筑(如云南公共建筑)。
减隔震摩擦摆支座生产厂家
管线柔性连接:所有穿过隔震层的管线(包括给排水、电气和暖通专业的管线与配管),必须采用可靠的柔性连接方式,或采取其他行之有效的措施,以适应隔震层在罕遇地震发生时可能产生的巨大水平位移。
地震时,上部结构置于柔性隔震层上,只做缓慢的水平运动,从而“隔离”从地面传到上部结构的震动,大幅降低上部结构反应。大地震时结构如同处于“安全岛”上,能有效保护建筑和室内物品不受损坏。这种把传统“硬抗”方式改为“以柔克刚”的减震技术,是中华文化“以柔克刚”哲学思想在抗震减灾技术上的成功运用。我们的祖先早就成功地将隔震技术运用在遍布全国的宫殿、寺庙、楼塔等建筑中,使它们在历次大地震中得以保存下来。现代隔震技术是诞生于20世纪80年代的一项新技术,主要应用于复杂或大跨建筑、建筑、学校、医院、住宅、重要设备和历史文物等,有些隔震工程已经成功经受了地震的考验。我国座隔震建筑于1980年建成。1993年建成的我国栋8层钢筋混凝土框架橡胶支座隔震房屋,位于广东汕头,经受了1994年台湾海峡3级地震的考验。
建筑摩擦摆隔震支座FPS3A
GPZ 系列盆式橡胶支座采用焊接连接方式时,需重点关注以下环节:施工前需在支座安装位置预埋钢板,预埋钢板的尺寸需比支座顶、底板每边大 50~100mm,确保焊接操作空间;预埋钢板需与墩台钢筋可靠锚固(如采用穿孔塞焊、锚固筋连接等方式),防止支座受力时钢板位移,锚固强度需通过抗拔试验验证;焊接完成后需清除焊渣,检查焊缝质量(无气孔、夹渣、裂纹等缺陷),必要时进行超声波探伤检测。
按跨逐跨整体顶升法:断开桥跨之间的联系,使其成为简支状态,再用顶升设备将整跨顶起后进行支座更换。此方法施工周期相对较长,对交通的影响也较大。
摩擦摆隔震支座FPSII-5000-300-3.48
隔震支座体系除了比传统抗震体系具有明显降低地震反应、确保安全外,还可降低房屋造价,根据施上经验。造价的节约、浪费与建筑结构的整体设计和抗震设防等级有着直接的关系。一般建造于抗震设防高烈度区的隔震房屋,采用框架结构,层数较多。且设计技术水平、施工技术水平跟得上,隔震层设计合理,工程造价就会低一些,经济效果明显,对于砌体结构的隔震房屋,如若能按照“设计规范”的规定,增加房屋层。
在支座选型方面,应优先考虑矩形支座设计,因为矩形支座沿短边方向的转动性能明显优于长边方向;圆形支座虽然各向转动性能一致,但总体转动效能通常不及矩形支座。支座设计不仅要满足承受和传递荷载的基本要求,还应确保桥跨结构能够产生必要的变位,同时保证力的传递路径合理通畅,避免出现过度应力集中现象。
建筑摩擦摆式减隔震支座
安装前检查,需对梁体底面、墩台支承垫石平整度与平行度进行复核,确保支座安装面与滑动面平行度偏差≤2‰,防止支座扭曲及应力集中。
大型储油罐:可以帮助减少地震对储油罐的影响,降低潜在的安全风险。

隔震体系虽需增加隔震层(含支座、连接构件)造价(约增加 30~50 元 /㎡),但可通过两大途径抵消:上部结构设防降级:隔震后上部结构抗震设防烈度可降低 1 度(如从 8 度降至 7 度),构件截面(梁、柱、墙)可减小 10%~15%;配筋量减少:地震作用降低 60%~80%,上部结构配筋率可降低 15%~20%(如框架梁配筋率从 1.2% 降至 1.0%)。最终,隔震建筑总造价与同类非隔震建筑基本持平,部分大跨度建筑甚至略有降低(约 2%~3%)。
在垫石预处理阶段,垫石的强度必须≥C40,这是为了保证垫石能够承受盆式橡胶支座传递的巨大荷载,防止在使用过程中出现垫石压碎等破坏现象。平面尺寸较支座外扩 50mm,这样的尺寸设计可以为支座提供足够的支撑面积,避免支座边缘出现应力集中 。同时,顶面平整度≤2mm/m,这一高精度的要求是为了确保支座能够与垫石紧密贴合,均匀传递荷载。在实际施工中,通常采用 M50 环氧砂浆对垫石顶面进行调平处理,环氧砂浆具有高强度、高粘结性和良好的耐久性,能够有效地保证垫石顶面的平整度和支座与垫石之间的粘结力 。
