《规范》没有对滑板橡胶支座下桥墩地震力的计算给出明确规定,如果根据摩擦力与桥墩自身地震力叠加并乘以相应的系数作为设计地震力,则存在可能得到的桥墩屈服强度低于滑板支座发生滑动的摩擦力,从而导致墩的屈服先于滑板支座发生滑动,这与预期的性能不一致;此外,由于存在滑板支座不发生滑动的可能,因此,设计中应根据滑板支座的实际情况进行桥墩相应的抗震设计,这是目前规范所没有考虑的。
从工程实例来看,隔震技术的有效性已得到验证。对比数据显示,采用隔震设计的建筑在地震中能够保持正常使用功能,而非隔震结构则往往遭受严重损坏且恢复困难。在计算方法上,隔震结构需考虑上部结构的弹性特性与隔震层的非线性特性,通常采用时程分析方法进行计算分析。
减隔震摩擦摆支座生产厂家
LRB系列高阻尼隔震橡胶支座竖向承载力,水平恢复力,阻尼(吸能)三位一体的减隔震装置;支座水平极限位移较大,可有效吸收地震能量;阻尼比较大并能随设计要求调整,具有良好的耗能能力;维修管理成本低(无需其他阻尼装置);
对于有芯型橡胶支座,屈服后水平刚度应根据R=100%,F=0.2HZ试验的第3条滞回曲线按下式确定:KPY=0.5(Q+-Q-)/(U+-U-)+︱(QY+-QY-)/(UY+-UY-)︱式中:KPY―建筑橡胶支座(有芯型)屈服后水平刚度,UY+―正方向屈服位移,UY-―负方向屈服位移,QY+一与相应的水平剪力,QY-―与?—相应的水平剪力橡胶支座的屈服后水平刚度(有芯型)等效黏滞阻尼比被试橡胶支座的等效黏滞阻尼比按下式计算,ζEQ=W/(2πQ+U+)(或ζEQ=W/[2πKEQ(U+)2]式中:ζEQ-建筑橡胶支座等效粘滞阻尼比,W-滞回曲线所围面积水平性能\水平极限变形能力.当橡胶支座在产品的设计压应力的作用下,水平缓慢或分级加载,绘出水平荷载和水平位移曲线,同时观察橡胶支座匹周表现,当橡胶支座外观出现明显异常或试验曲线异常时,视为破产品的耐久性能应按表8规定进行。
摩擦摆式隔震支座
所有计算与验算需严格遵循《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004)的要求,不得突破规范限定的安全阈值。
拱桥与支座形式:拱桥可根据拱轴线线形进行分类,不同线形对应不同的力学特性。支座的选择需与之匹配。
建筑摩擦摆隔震支座FPS3A生产厂家
在地震等自然灾害发生时,建筑结构会产生振动,而摩擦摆支座中的摩擦材料就是利用这种振动作用的。当结构发生一定的位移时,支座底部的钢板就会受到应力,这时,摩擦材料就会通过擦蹭作用,产生摩擦力抵消这部分应力,从而达到减震的效果。
易于安装和维护:摩擦摆隔震支座的安装相对简单,且后期维护成本较低。
建筑摩擦摆隔震支座
橡胶支座的生产制造需要遵循严格的质量控制体系。在配方设计方面,由于支座的规格型号众多,且经常涉及非标准产品的定制生产,不同形状系数的支座需要采用针对性的配方方案,以确保各项力学性能指标均能达到标准要求。
球型支座转动需匹配上部结构转动中心:若两者转动中心重合,仅需球冠衬板与球面四氟板滑动即可实现转动;若转动中心不重合,支座转动受梁体约束,需在上支座板与平面四氟板间增设第二滑动面。

采用时程计算楼层剪力和楼层倾覆弯矩应当在设防烈度下计算。如果在小震下计算楼层内力,隔震支座可能还没有产生非线性反应,不能反应隔震支座的效果;如果在大震下计算,那么上部结构也有部分区域进入飞线性,将这样的计算结果代入小震设计是不合理的。只有在中震下,隔震结构的隔震层进入非线性耗能过程,而上部结构基本保持弹性,计算得到的减震系数才能用于弹性设计中。此外,隔震结构的设计目标应当在设防烈度下上部结构基本完好,这点在水平减震系数的计算上反应;
盆式橡胶支座安装需确保上下各部件纵横向精准对中;若安装温度与设计温度存在差异,支座纵向上下部件错开距离必须与计算值一致。连续建筑实施体系转换时,橡胶支座与水泥浆块之间需采取隔热措施,避免填充四氟乙烯板和橡胶块因温度影响受损。
