形状系数是衡量橡胶支座结构合理性的重要指标,分为第一形状系数(S?)与第二形状系数(S?):第一形状系数(S?):主要体现加劲薄钢板对橡胶板的约束效果,S?越大,钢板对橡胶的侧向约束越强,可有效抑制橡胶受压时的鼓胀变形,根据国内外研究成果与工程经验,通常要求 S?≥15;第二形状系数(S?):重点反映橡胶支座受压时的整体稳定性,避免支座因高径比不合理导致失稳破坏,一般取值范围为 3~6,需结合支座高度与承载面积综合确定。
本系列支座原则上本体的长边沿横桥向安装,考虑到桥梁横向尺寸可能受限,定制设计了矩形固定型专用系列(如HDR(Ⅰ/Ⅱ)-AB-G[Z]*/*),布置方式为支座本体的长边沿纵桥向布置。
摩擦摆隔震支座FPSII-4000-350-3.81
逋常在布置建筑支座时要考虑以下的基本原则:上部结构是空间结构时,支座应能同时适应建筑顺桥向(叉方向)和横桥向…方向)的变形;支座必须能可靠地传递垂直和水平反力;女座应使由于梁体变形所产生的纵向位移、横向位移和纵、横向转角应尽可能不受约束;铁路建筑通常必须保每联梁体上设置一个固定支座;当建筑位下坡道1:,固定支座一般应设在下坡方向的桥台上;当挢梁位于甲坡上,固定支座宜设在卞要行车方向的前端桥台上;较长的连续梁桥固定支座设在桥长中间部位的桥墩上较为合理,闶为此处支座的垂直反力较大,且两侧的自由仲缩长度比较均衡;固定支座宜设置在具有较大支座反力的地方;墩顶横梁的横向刚度较小时,应设置横向易转动的建筑支座;在同一桥墩上的几个支座应具有相近的转动刚度;在预应乃梁上的支座不应该对梁体的横向预应力产生约束,同时也不得将施加梁体横向顸应力的荷载传给墩台;对于斜桥及横向芴发生变形的建筑不宜采用辊轴和摇轴等线支座;连续梁可能发生支座沉陷时,应考虑支座高度调整的对能性。
建筑摩擦摆隔震支座是一种利用单摆原理来延长结构自振周期,利用球面接触摩擦滑动来消耗能量的减隔震装置。它通常设置在上部结构(如建筑物的梁、板等)与下部结构(如桥墩、基础等)之间,通过“软连接”的方式,减小传递到结构中的侧向力和水平振动,使结构在地震下免受破坏。
建筑隔震摩擦摆支座源头工厂
施工安装:这是支座应用成功的关键环节,安装时需严格控制精度 —— 水平精度倾斜度需达到 1/500,与设计标高高度差 ±3mm,位置精度 X-Y 方向 ±5mm;架设下预埋板周边钢筋时,需避开预埋锚筋及预埋套筒,避免影响支座受力。
建筑隔震技术是提升工程抗震安全性的核心手段,叠层橡胶隔震支座作为核心构件,其设计模式、施工验收、性能管控直接影响隔震效果。本文结合工程实践与技术研究,系统梳理隔震层设计模式、支座施工验收要求、常见问题及技术实效,为隔震工程应用提供参考。
摩擦摆隔震支座FPSII-8000-350-3.81源头工厂
起鼓问题防治:基层存在起皮、起砂、开裂或潮湿等情况时,易导致支座粘结不良。预防措施包括:加强基层施工质量控制,待基层充分干燥后先涂刷底层涂料,固化后再按防水层施工工艺逐层施工。
大吨位设计:为大吨位支座设计的盆式支座,除具备基本结构外,通常还需增设多种附加部件(如防尘圈、锚固系统等),以满足其特殊的承载、位移和耐久性要求。
建筑摩擦摆式减隔震支座厂家
从技术发展历程来看,橡胶支座经历了从普通板式橡胶支座到盆式橡胶支座,再到四氟乙烯板式橡胶支座的不断演进过程,其力学性能和应用范围得到了持续拓展和完善。
隔震技术是在基础结构与上部结构之间设置隔震层,使上部结构与地震动绝缘,从而保护上部结构不受地震破坏的技术体系。结构隔震体系包括上部结构、隔震装置和下部结构三部分,通过在建筑物底部设置专门的隔震装置,有效隔离地震能量向上部结构的传递。

橡胶支座根据胶种特性,板式橡胶支座的适用温度范围分类如下:氯丁橡胶:适用温度 +60℃∽-25℃;天然橡胶:适用温度 +60℃∽-40℃;三元乙丙橡胶:适用温度 +60℃∽-45℃
隔震层的偏心:指上部结构的质心与隔震层隔震支座的刚心不重合,这对隔震层端部的隔震支座的水平变形影响很大,当偏心很大时,结构角部的隔震支座可能产生较大的水平位移,甚至超出限位控制,而此时中部某些隔震支座变形很小,整体隔震不合理。对于相同的偏心矩和偏心率,由于隔震层平面形状、隔震支座位置、非线性特性引起的扭转振动也不相同。即使在弹性设计时,不存在偏心,但在高压力下,特别是第二形状系数较小的小型叠层橡胶支座的刚度会降低;地震时摩擦支座的摩擦力与轴力相关;铅芯橡胶支座、阻尼器等会因为制作安装上的误差导致刚度的变化等,偏心是难以避免的。
