影响:上述异常情况若未能被及时识别并处理,将直接影响支座的正常工作状态,显著缩短其使用寿命,对结构安全构成潜在威胁。
板式橡胶支座:自二十世纪三十年代国外开始研制,至今已有七十余年应用历史。国外橡胶工程界通过对不同形状系数、不同橡胶硬度的试件进行数千次应力 - 应变试验,明确了其工作原理,是工程中应用广泛的基础支座类型;
摩擦摆隔震支座FPSII-10000-300-3.48
抗震力计算:根据相关规范,作用于板式橡胶支座上的地震力需依据特定公式分别计算,并取计算结果中的较大值作为设计控制值。
为确保橡胶支座产品性能,应执行严格的生产与技术标准,重视原材料选择、配方研发及工艺控制,同时加强制程与成品质量管理。制造企业须参照如《建筑抗震设计规范》等相关标准进行产品研发与认证,提高支座耐久性与可靠性。
摩擦摆隔振支座源头工厂
板式橡胶支座结构与特性:由多层橡胶片与薄钢板镶嵌、粘合、硫化而成。具备足够的竖向刚度以承受垂直荷载,能可靠传递上部结构反力至墩台。同时拥有良好的弹性以适应梁端转动,并依靠橡胶的剪切变形提供较大的水平位移能力。
在建筑构造中,支座是建筑上、下部构造的衔接点,其效果是将上部构造的荷载顺适、平安地传递到建筑墩台上,还包管上部构造在荷载、温度转变、混凝土缩短徐变等要素效果下自在变形,以便使构造的实践受力状况契合核算式,并维护梁端、墩台帽不受毁伤-.然则近年来作为建筑主要构成局部的建筑支座经常呈现开裂、剪切过大等问题,支座的减震、滑移等效果严峻衰减,然后影响建筑的运用寿命。
摩擦摆隔震支座FPSII-1000-400-4.11生产厂家
仪器检测:采用联用技术:NMR(核磁共振)分析橡胶分子结构;X 荧光光谱检测钢板化学成分;IR(红外光谱)、质谱仪鉴定橡胶品种(天然胶 / 三元乙丙胶)及助剂(防老剂、硫化剂);谱图分析:对比标准谱库,量化各成分含量;综合验证:结合检测数据与工程需求,提供成分优化建议(如替换低成本助剂)。
圆形球冠橡胶支座专为异形结构设计,分为两类:球冠圆板式支座:通过橡胶球冠调整受力方向,适应坡梁、曲梁的转角需求,竖向刚度稳定;聚四氟乙烯球冠圆板式支座:在球冠表面粘覆 PTFE 板,兼具转角与水平滑移功能,适用于大位移 + 大转角的复杂场景(如互通式立交桥)。
减隔震摩擦摆支座源头工厂
安装变形问题:支座在安装或使用过程中出现的变形(包括压缩变形与剪切变形) 是常见问题。主要原因包括:
在绑扎隔震层梁板钢筋时,严禁碰撞下预埋板。当梁的纵向钢筋位置与预埋锚筋或预埋螺栓套筒位置发生冲突时,可将梁钢筋调整为双排或多排布置,但需保持箍筋的肢数不变,确保结构受力性能。

建设单位需深入探讨工程设计与施工中支座的常见问题,通过严格的施工质量控制与定期养护,确保支座始终处于良好工作状态。定期检查支座的橡胶老化情况、钢板锈蚀程度、滑移面洁净度及润滑油储量,及时更换老化或损坏的支座,以优化建筑结构受力状态,延长工程整体使用寿命。
监理工程师需重点监督以下内容,确保安装施工质量:检查支座是否出现滑移、脱空现象,剪切位移是否过大(剪切角不应大于 3°),压缩变形是否在允许范围内;核查橡胶支座保护层是否有开裂、变硬、老化等问题,四氟板与不锈钢板接触是否良好;严格按照设计与规范要求,落实各项技术措施,加强对安装精度、密贴度及固定可靠性的监督检查。
